a numerical scheme for space-time fractional advection-dispersion equation

Authors

shahnam javadi

department of mathematics, faculty of mathematical sciences and computer, kharazmi university mostafa jani

department of mathematics, faculty of mathematical sciences and computer, kharazmi university, tehran, iran esmail babolian

department of mathematics, faculty of mathematical sciences and computer, kharazmi university, tehran, iran

abstract

in this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. we utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. by using bernstein polynomial basis, the problem is transformed into a linear system of algebraic equations. matrix formulation, error analysis and order of convergence of the proposed method are also discussed. some numerical experiments are presented to demonstrate the effectiveness of the proposed method and to confirm the analytic results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

full text

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. After time discretization, we utilize collocation technique and implement a product integration method in order to simplify the evaluation of the terms involving spatial fractional order derivatives. Then utilizing Bernstein polynomials as basis, the problem is transformed into a linear ...

full text

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

full text

Numerical Solving Two-dimensional Variable-order Fractional Advection-dispersion Equation

Abstract: In this paper, a two-dimensional variable-order fractional advection-dispersion equation with variable coefficient is considered. The numerical method with first order temporal accuracy and first order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by using energy method. Finally, the results of a numerical example supports the theoret...

full text

Numerical Solutions of the Fractional Advection- Dispersion Equation

In this paper we have used the homotopy analysis method (HAM) to obtain solution of space-time fractional advectiondispersion equation. The fractional derivative is described in the Caputo sense. Some illustrative examples have been presented. The obtained results using homotopy analysis method demonstrate the reliability and efficiency of the proposed algorithm.

full text

Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer

Finite element computations for singularly perturbed convection-diffusion equations have long been an attractive theme for numerical analysis. In this article, we consider the singularly perturbed fractional advection-dispersion equation (FADE) with boundary layer behavior. We derive a theoretical estimate which shows that the under-resolved case corresponds to ǫ < hα−1, where α is the order of...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of nonlinear analysis and applications

جلد ۷، شماره ۲، صفحات ۳۳۱-۳۴۳

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023